[Kumar, 2(6): June, 2013]

| JESRT

ISSN: 2277-9655

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY
High Speed Low Area Pattern Matching Algorithm for Memory Architecture
Kiran Kumar.M™, Murali Kante?, Narayana Reddy Vanteru®
23 Narayana Engineering College, India
kiranyadav418@gmail.com

Abstract

Pattern matching is one of the most importantpoments for the content inspection based applicatad
network security, and it requires well designedethms and architectures to keep up with the iasireg network
speed. Due to the advantages of easy re-confiditlyalind scalability, the memory-based string matgh
architecture is widely adopted by network intrusidetection systems (NIDS). In order to accommodhte
increasing number of attack patterns and meethtmighput requirement of networks, a successful NHystem
must have a memory-efficient pattern-matching algor and hardware design. In this paper, we propmse
memory-efficient pattern-matching algorithm whicancsignificantly reduce the memory requirement. Soort
rule sets, the new algorithm achieves 21% of menreduction compared with the traditional Aho—Cacksi
algorithm. In addition, we can gain 24% of memaggluction by integrating our approach to the bittsdgorithm

which is the state of the art memory-based approach

Keywords. Aho—Corasick (AC) algorithm, finite automata, teah matching.

I ntroduction

The main purpose of a signature-based network
intrusion detection system is to prevent malicious
network attacks by identifying known attack pattern
Due to the increasing complexity of network traffind
the growing number of attacks, an intrusion debecti
system must be efficient, flexible and scalable.

The primary function of an intrusion detection
system is to perform matching of attack string qrats.
Because string matching is the most computativieitas
network intrusion detection (NIDS) systems, many
hardware approaches are pro-posed to acceleratg str
matching. The hardware approaches may be classified
into two main categories, the logic [1]-[6] and the
memory architectures [7]-[11]. In terms of
reconfigurability and scalability, the memory
architecture has attracted a lot of attention bseat
allows on-the-fly pattern update on memory without
resynthesis and relayout. The (attack) string pagtare
compiled to a finite-state machine (FSM) whose atitp
is asserted when any substring of input stringschest
the string patterns. Then, the corresponding state
transition table of the FSM is stored in

http: // www.ijesrt.com

memory
g memory
- next state match vector
-E memory address ¥ 1 0
- current state _input . .
| o £ 4 1
1 : .
! g 3
! T i
e e e e e e = = - IMI

Fig.1 Basic memory architecture

Fig. 1 Represents a simple memory architecture
to implement the FSM. In the architecture, the mgmo
address register consists of the current state iaymat
character; the decoder converts the memory adtirabe
corresponding memory location, which stores thet nex
state and the match vector information. A “0” ineth
match vector indicates that no “suspicious” patt&gn
matched; otherwise the value in the matched vector
indicates which pattern is matched.

For example in Fig. 1, suppose the current state
is 7 and the input character is . The decoder pdiht to
the memory location which stores the next statadthe
match vector 2. Here, the match vector 2 indicates
pattern “pcdg” is matched.

In this paper, we propose a state-traversal
mechanism on a merge FSM while achieving the same
purposes of pattern matching. Since the numbetatés

(C) International Journal of Engineering Sciences & Research Technology

[1645-1649]

[Kumar, 2(6): June, 2013]

in merg FSM can be drastically smaller than thigioal
FSM, it results in a much smaller memory size. Our
algorithm achieves 21% of memory reduction compared
with the traditional AC algorithm.

Review of AC Algorithm

The Aho—Corasick (AC) algorithm [12] is thmst
popular algorithm which allows for matching mulépl
string patterns. In this section, we review the AC
algorithm. Among all memory architectures, the AC
algorithm has been widely adopted for string matghi
in [2], [10], [11] because the algorithm can effeely
reduce the number of state transitions and thexetfoe
memory size.

~b[[~p

Fig. 3 Statediagram of an AC machine

input nextstate failure match

vector
State 0: b 1 0 00
State 0: p 5 0 00
State 1: ¢ 2 0 00
State 2: d 3 0 00
State 3: f 4 0 01
State 5; ¢ 6 0 00
State 6: d 7 0 00
State 7: g 8 0 10

Fig. 4 AC statetable

http: // www.ijesrt.com

ISSN: 2277-9655

In figures 2 and 3 shows the state transition @iagr
derived from the AC algorithm where the solid lines
represent the valid transitions while the dottededi
represent a new type of state transition calledfalilare
transitions.

The failure transition is explained as follows.
Given a cur-rent state and an input character, Afte
machine first checks whether there is a valid itenmsfor
the input character; otherwise, the machine junopthé
next state where the failure transition points. M hihe
machine recursively considers the same input cterac
until the character causes a valid transition. @mmsan
example when an AC machine is in state 1 and thatin
character is p. According to the AC state tablé& i 4,
there is no valid transition from state 1 given thput
character p. When there is no valid transition, &@
machine takes a failure transition back to stat€Hen in
the next cycle, the AC machine reconsiders the same
input character in state 0 and finds a valid tr#osito
state 5. This example shows that an AC machineteaiay
more than one cycle to process an input character.

In Fig. 3, the double-circled nodes indicate the
final states of patterns. In Fig. 3, state 4, thalfstate of
the first string pattern “bcdf”, stores the matcéactor
{P,P}={01} and state 8, the final state of the second
string pattern “pcdg”, stores the match vector of
{P,P}={10} . Except the final states, the other states
store the match vector §P;}={00} to simply express
those states are not final states.

State Traversal Mechanism

Fig. 6 Architecture of the state traversal machine

(C) International Journal of Engineering Sciences & Research Technology

[1645-1649]

[Kumar, 2(6): June, 2013]

Basic Idea

Due to the common substrings of stringtegpas,
the compiled AC machine may have states with simila
transitions. Despite the similarity, those simiaates are
not equivalent states and cannot be merged direletly
this section, we first show that functional erreem be
created if those similar states are merged diredthen,
we propose a mechanism that can rectify those ifurait
errors after merging those similar states.

The merg_FSM is a different machine from the
original state machine but with a smaller numbestafes
and transitions. A direct implementation of mergMFS
has a smaller memory than the original state machin
the memory architecture. Our objective is to modig
AC algorithm so that we can store only the stedadition
table of merg_FSM in memory while the overall syste
still functions correctly as the original AC statechine
does. The overall architecture of our state tralers
machine is shown in Fig. 6. The new state traversal
mechanism guides the state machine to traverséhen t
merg_FSM and provides correct results as the @aigh®
state machine. In Section IV, we first discuss $tete
traversal mechanism. Then in Section V, we distusg
the state traversal machine is created in our lfgor

State Traversal Mechanism on aMERG_FSM

In the previous example, state 26 regresstwo
different states (state 2 and state 6) and state 37
represents two different states (state 3 and Stptwe
have shown that directly merging similar statesi¢eto
an erroneous state machine. To have a correct,resul
when state 26 is reached, we need a mechanism
to understand in the original AC state machine twaeit
is state 2 or state 6. Similarly, when state 3e&ched,
we need to knowin the original AC state machine
whether it is state 3 or state 7. In this example,can
differentiate state 2 or state 6 if we can memottze
precedent state of state 26. If the precedent efadtate
26 is state 1, we know that in the original AC stat
machine, it is state 2. On the other hand, if thec@dent
state of state 26 is state 5, the original is s€td his
example shows that if we can memorize the precedent
state entering the merged states, we can diffetentll
merged states. In the following section, we disduss
the precedent path vector can be retained duriegttite
traversal in the merg_FSM.

First of all, we would like to mention that in a
traditional AC state machine, a final state stotks
corresponding match vector which is one-hot encoded
For example in Fig. 3, state 4, the final statehef first
string pattern “bcdf”, stores the match vector atate 8,
the final state of the second string pattern “pcdgbres
the match vector of . Except for the final staths, other
states store simply to express those states arénabt
states. One-hot encoding for a match vector is

http: // www.ijesrt.com

ISSN: 2277-9655

necessary because a final state may represent thrame
one matched string pattern [4].

- -

%10 03,10 0>

O

-
-
- -
L pepp—

Fig. 8 New statediagram of Merg FSM

Therefore, the width of the match vector is
equal to the number of string patterns. As showRi(

4, the majority of memories in the column “match
vector” store the zero vectors {00} which are not
efficient.

In our design, we reuse those memory spaces
storing zero vectors {00} to store useful path mf@ation
called pathVec. First, each bit of the pathVec
corresponds to a string pattern. Then, if therestexa
path from the initial state to a final state, whitlatches
a string pattern, the corresponding bit of the Wathof
the states on the path will be set to 1. Otherviteey are
set to 0. Consider the string pattern “bcdf” whose
final state is state 4 in Fig. 7. The path fronmes@, via
states 1, 2, 3 to the final state 4 matches tls¢ $itring
pattern “bcdf’. Therefore, the first bit of the psfec of
the states on the path, {state O, state 1, stattage 3,
and state 4}, is set to 1. Similarly, the path fretate O,
via states 5, 6, 7 to the final state 8 matches#w®mnd
string pattern “pcdg”. Therefore, the second bitthef

(C) International Journal of Engineering Sciences & Research Technology

[1645-1649]

[Kumar, 2(6): June, 2013]

pathVec of the states on the path, {state 0, Sattate

6, state 7, and state 8}, is set to 1. In additiea,add an
additional bit, called ifFinal, to indicate whethte state

is a final state. For example, because states 48aa
final states, the ifFinal bits of states 4 and & set to 1,
the others are set to 0. As shown in Fig. 7, edates
stores the pathVec and ifFinal as the form, “pathVe
ifFinal”. Compared with the original AC state maadiin

Fig. 3, we only add an additional bit to each stdte
have mentioned that in this example, states 2 and 6
states 3 and 7 are similar because they have simila
transitions. However, they are not equivalent. Nibizt
two states are equivalent if and only if their netdtes
are equivalent. In Fig. 7, states 3 and 7 are airbilit not
equivalent because for the same input, state 8stak
transition to state 4 while state 7 takes a faittaasition

to state 0. Similarly, state 2 and state 6 are not
equivalent states because their next states, Staad
state 7, are not equivalent states.

State Traversal Pattern Matching Algorithm
Algorithm: State traversal pattern matching algorithm
Input: A text string x=a,a,...a, where ¢ach g; is an input
symbol and a state traversal machine M with valid
transition function g, failure transition function f; path
function pathVec and final function ifFinal.

Output: Locations at which keywords occur in x.
Method:

begin
state «— 0
preReg «— 1....1
for i < until n do
begin
preReg = preReg & pathVec(state)
while gistate, a;) == fail || preReg == 0 do
begin
state «— f(state)
preReg «— 1....1
end
state «— g(state, a;)
if ifFinal(state) = 1 then
begin
print i
print preReg
end
end

/fall bits are initiated to 1.

end

Hardware Architecture

This hardware module which can be comégufor
matching 16 or 32 patterns with a state machine
containing 1024 valid transitions at most. In F8y.the

http: // www.ijesrt.com

ISSN: 2277-9655

register, called address_register, is used to stbee
current state and the input character. The validnong is
used to store the in-formation of valid_state, path and
if Final corresponding to each valid transition lghihe
failure_memory is used to store the failure_state
corresponding to each failure transition. In thistptype,
we use a hardwired circuit, calledA2P , to trarsltte
content of the address_register to a contiguoupesco
called pos, to utilize the valid_memory. The citcARP
can be implemented using hardwired circuit or CAM.
addition, the signal n_valid is high if there is malid
transition corresponding to the address_register.
Furthermore, the register, called preReg , is usddace
the precedent pathVec in each state. The preReg is
initiated to be 1 for all bits and is updated byfpeming a
bitwise AND operation on its current value and the
pathVec from the valid_memory. The ns_ctrl uniused
to determine the next state by the value of preRed
n_valid. If the preReg is 0 for all bits or the alid is 1,
the ns_sel will output low to let the failure_statpdate
the current_state register. On the other handgifpreReg
is not zero and the n_valid is not 1, the ns_sélonitput
high to let the valid_state update the currentestgister.
Input char
Address_register 18 bits valid_memory
|currenl_sm1e| input_char I"'
t 8 bits

ifFinal
pathVec

pos | valid state
A2P |—H
10 bit

n_valid
failure memory
failuret state

—
)

A 4
10 bits L
| y
10 bits Y r‘Re
ns_ctrl preses
v

0 1

10 bit

7
Fig. 8 Hardware Module for New Algorithm

ns_sel

Results and Discussion

Using the traditional AC algorithm, the number
of transitions and states are 6793 and 6804, résplc
The memory size is 49 267 bytes. Integrating our
algorithm to the AC algorithm, the number of trdiasis
and states are reduced to 4432 and 3846, resfdgclivie
memory size is reduced to 30 699 bytes, 38% of mgmo
reduction from the AC algorithm. For total 2217irggr

(C) International Journal of Engineering Sciences & Research Technology

[1645-1649]

[Kumar, 2(6): June, 2013]

patterns of Snort rule sets, our algorithm achievéd %
memory reduction compared with the AC algonthm

o
]
| —
[—

00118111

Fig. 9 Indicatesthe current state output

Conclusion

We have presented a memory-efficient pattern
matching algorithm which can significantly redude t
number of states and transitions by merging pseudo-
equivalent states while maintaining correctnesstoig
matching. In addition, the new algorithm is
complementary to other memory reduction approaches
and provides further reductions in memory needs Th
experiments demonstrate a significant reduction in
memory footprint for data sets commonly used to
evaluate IDS systems.

References

[1] V. Aho and M. J. Corasick, “Efficient string
matching: An AID to bibliographic search,”
Commun. ACM, vol. 18, no. 6, pp. 333-340,1975.

[2] M. Aldwairi, T. Conte, and P. Franzon,
“Configurable string matchinghardware for
speeding up intrusion detectionfProc. ACM
SIGARCH Comput. Arch. News, vol. 33, no. 1, pp.
99-107, 2005.

[3] B. Brodie, R. Cytron, and D. Taylor, “A scalable
architecture for high-throughput regular-
expression pattern matching,” #roc. 33 Int.
Symp. Comput. Arch. (ISCA), 2006, pp. 191-122.

[4] Z. K. Baker and V. K. Prasanna, “High-throughput
linked-pattern matching for intrusion detection
systems,” in Proc. Symp. Arch. for Netw.
Commun. Syst. (ANCS), Oct. 2005, pp. 193-202.

[5] Y. H.Cho and W. H. Mangione-Smith, “A pattern
matching co-processor for network security,” in
Proc. 42nd |EEE/ACM Des. Autom. Conf.,
Anaheim, CA, Jun. 13-17, 2005, pp. 234-239.

[6] Y. H. Cho and W. H. Mangione-Smith, “Fast
reconfiguring deep packet filter Froc. 13th Ann.
IEEE Symp. Field Program. Custom Comput.
Mach. (FCCM), 2005, pp. 215-224.

http: // www.ijesrt.com

ISSN: 2277-9655

[7] C.R. Clark and D. E. Schimmel, “Scalable pattern
matching on high speed networks,” Bnoc. 12th
Ann. |EEE Symp. Field Program. Custom Compuit.
Mach. (FCCM), 2004, pp. 249-257.

[8] S. Dharmapurikar and J. Lockwood, “Fast and
scalable pattern matching for content filteringy” i
Proc. Symp. Arch. for Netw. Commun. Syst.
(ANCS), Oct. 2005, pp. 183-192.

[9] B. L. Hutchings, R. Franklin, and D. Carver,
“Assisting network intrusion detection with
reconfigurable hardware,” ifProc. 10 th Annu.
IEEE Symp. Field-Program. Custom Comput.
Mach. (FCCM), 2002,pp. 111-120.

[10]H. J. Jung, Z. K. Baker, and V. K. Prasanna,
“Performance of FPGA implementation of bit-split
architecture for intrusion detection systems,”
presented at the 20th Int. Parallel Distrib. Preces
Symp. (IPDPS), Rhodes Island, Greece, 2006.

[11] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley,
and J. Turner, “Algorithms to accelerate multiple
regular expressions matching for deep packet
inspection,” inProc. ACM SSGCOMM Compuit.
Commun. Rev. 2006, pp. 339-350.

[12] C. H. Lin, C. T. Huang, C. P. Jiang, and S. C.
Chang, “Optimization of pattern matching circuits
for regular expression on FPGAJEEE Trans.
Very Large Scale Integr. (VLS) Syst., vol. 15, no.
12, pp.1303-1310, Dec. 2007

(C) International Journal of Engineering Sciences & Research Technology
[1645-1649]

